Trắc nghiệm Toán học 9 Kết nối chương 9: Đường tròn ngoại tiếp và đường tròn nội tiếp - Luyện tập chung (2)
Trắc nghiệm Toán học 9 Kết nối chương 9: Đường tròn ngoại tiếp và đường tròn nội tiếp - Luyện tập chung (2)
1. Một đa giác đều có 7 cạnh. Số đường tròn ngoại tiếp và nội tiếp của nó là bao nhiêu?
A. 1 đường tròn ngoại tiếp và 1 đường tròn nội tiếp
B. Chỉ có đường tròn ngoại tiếp
C. Chỉ có đường tròn nội tiếp
D. Không có cả hai
2. Trong một tam giác cân, đường trung trực của cạnh đáy có đặc điểm gì liên quan đến đường tròn nội tiếp?
A. Đường trung trực của cạnh đáy đi qua tâm đường tròn nội tiếp.
B. Đường trung trực của cạnh đáy là đường kính của đường tròn nội tiếp.
C. Đường trung trực của cạnh đáy không liên quan đến tâm đường tròn nội tiếp.
D. Đường trung trực của cạnh đáy là tiếp tuyến của đường tròn nội tiếp tại trung điểm cạnh đáy.
3. Đường tròn ngoại tiếp tam giác đều có bán kính gấp bao nhiêu lần đường tròn nội tiếp tam giác đều đó?
A. 1 lần
B. 2 lần
C. 3 lần
D. 4 lần
4. Cho hình vuông ABCD có tâm O. Đường tròn ngoại tiếp hình vuông có tâm là:
A. Điểm A
B. Trung điểm của AB
C. Tâm O
D. Giao điểm của hai đường chéo
5. Cho một tam giác có chu vi là 30cm và diện tích là 30cm$^2$. Bán kính đường tròn nội tiếp tam giác đó là:
A. 1cm
B. 2cm
C. 3cm
D. 5cm
6. Cho hình vuông có cạnh là a. Bán kính đường tròn nội tiếp hình vuông là:
A. $a$
B. $a/2$
C. $a\sqrt{2}$
D. $a/\sqrt{2}$
7. Cho tam giác ABC vuông tại A. Gọi r là bán kính đường tròn nội tiếp, R là bán kính đường tròn ngoại tiếp. Mối quan hệ giữa r, R và các cạnh của tam giác là gì?
A. $r = R$
B. $r = \frac{a+b-c}{2}$ và $R = \frac{c}{2}$
C. $r = \frac{a+b+c}{2}$ và $R = \frac{c}{2}$
D. $r = \frac{a+c-b}{2}$ và $R = \frac{a}{2}$
8. Đường tròn nội tiếp tam giác vuông là đường tròn có tâm là:
A. Giao điểm ba đường cao
B. Giao điểm ba đường trung trực
C. Giao điểm ba đường phân giác
D. Giao điểm ba đường trung tuyến
9. Tâm đường tròn ngoại tiếp tam giác là giao điểm của:
A. Ba đường phân giác
B. Ba đường cao
C. Ba đường trung trực
D. Ba đường trung tuyến
10. Cho tam giác đều ABC có cạnh a. Bán kính đường tròn nội tiếp tam giác là:
A. $a\sqrt{3}/6$
B. $a\sqrt{3}/3$
C. $a\sqrt{3}/2$
D. $a$
11. Cho tam giác ABC có AB = 6cm, AC = 8cm, BC = 10cm. Tính bán kính đường tròn ngoại tiếp tam giác ABC.
A. 3cm
B. 4cm
C. 5cm
D. 6cm
12. Cho tam giác ABC vuông tại A. Tiếp tuyến tại B của đường tròn ngoại tiếp tam giác ABC song song với đường nào?
A. Cạnh AB
B. Cạnh AC
C. Cạnh BC
D. Đường trung tuyến ứng với cạnh BC
13. Tam giác có ba cạnh lần lượt là 5, 12, 13 là tam giác gì?
A. Tam giác nhọn
B. Tam giác tù
C. Tam giác vuông
D. Tam giác cân
14. Cho đường tròn tâm O. Điểm M nằm ngoài đường tròn sao cho OM = 10cm. Kẻ tiếp tuyến MA với A là tiếp điểm. Nếu MA = 8cm, bán kính đường tròn là bao nhiêu?
A. 6cm
B. 8cm
C. 10cm
D. 4cm
15. Đường tròn nội tiếp tam giác cân có tính chất gì về tâm của nó?
A. Nằm trên đường cao ứng với cạnh đáy
B. Nằm trên đường trung tuyến ứng với cạnh đáy
C. Nằm trên đường phân giác của góc ở đỉnh
D. Cả ba ý trên đều đúng