Category:
[Chân trời sáng tạo] Trắc nghiệm Toán học 6 bài 5: Trung điểm của đoạn thẳng
Tags:
Bộ đề 1
8. Điểm M nằm trên đường thẳng AB sao cho AM = MB. Có thể kết luận gì về điểm M?
Để M là trung điểm của đoạn thẳng AB, hai điều kiện cần được thỏa mãn là: 1. M nằm giữa A và B (tức là M thuộc đoạn thẳng AB). 2. AM = MB. Câu hỏi đã cho AM = MB, nhưng không khẳng định M nằm giữa A và B. Tuy nhiên, trong ngữ cảnh bài toán về trung điểm, nếu không nói rõ M nằm ngoài, ta thường ngầm hiểu M thuộc đoạn thẳng. Nếu M nằm trên đường thẳng AB và AM = MB, thì M chỉ có thể là trung điểm của AB. Nếu M không nằm giữa A và B, thì M sẽ nằm ở một phía của A hoặc B sao cho khoảng cách từ M đến điểm kia bằng khoảng cách từ M đến điểm này, điều này không thể xảy ra nếu A và B là hai điểm phân biệt. Tuy nhiên, định nghĩa chính xác là M nằm giữa A và B và AM = MB. Trong trường hợp này, chỉ cho AM = MB, M có thể không nằm giữa A và B nếu A, M, B không thẳng hàng. Nhưng nếu A, M, B thẳng hàng và AM = MB, thì M là trung điểm. Nếu chỉ AM = MB trên đường thẳng AB, thì M có thể không nằm giữa A và B nếu A=B, nhưng đề bài ngầm định A và B là hai điểm phân biệt. Trường hợp M nằm trên đường thẳng AB và AM = MB nghĩa là M cách đều A và B. Nếu M nằm giữa A và B thì M là trung điểm. Nếu M không nằm giữa A và B, thì M sẽ nằm ở ngoài đoạn AB, ví dụ A nằm giữa M và B hoặc B nằm giữa A và M, điều này không thỏa mãn AM = MB cho M khác A, B. Do đó, điều kiện AM = MB trên đường thẳng AB suy ra M là trung điểm của AB. Kết luận: M là trung điểm của đoạn thẳng AB.